
the transformation changes (see Table 1). 

Table 1: Changes of isometries from spatial domain to DCT 

1 .  

domain 
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4 DUNCAN, R.A., MARTIN, K.w., and SEDRA, AS.: ‘A Q-enhanced active- 
RLC bandpass filter’. Roc. ISCAS‘93, Chicago, pp. 14161419 

5 TSMDIS, Y.P.: ‘Integrated continuous-time fdter design’. Roc. 1993 
Custom Int. Circuits Conf., 1993, San Diego, pp. 6.4.16.4.7 

6 CAMIES, 6,s.: ‘principles of frequency modulation’ (Ilif€e L Sons, 
London, 1959) 
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with application in the GHz range’. To be published 
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Image compression using fractals and 
discrete cosine transform 

Y. Zhao and B. Yuan 

Indexing rerms: Image coding, Data compression, Fracrals, 
Transforms 

A new image data compression method using both fractals and 
the discrete cosine transform (DCT) is presented. The original 
image is fxst encoded by fractals in the DCT domain, then the 
error image is encoded using the DCT. Experiments show that the 
method can achieve high fidelity at a high compression ratio. 

Introduction: Recently a new compression method using fractal 
theory has been proposed by Jacquin [I] and widely investigated 
[2-6]. Experiments have shown that, although the method can 
achieve high compression, the quality of the decompressed image 
is not very good. Some measures (such as two-level image parti- 
tion) have been taken to improve the quality [I]. In this Letter, we 
propose a method combining fractals and DCT to improve the 
quality. It can offer high quality at high compression ratio. 

Coding scheme: 

(i) Compression procedure: The basic theory of the fractal-based 
coding method can be found in [I]; here we just introduce our 
method. 

The original image is first partitioned into two kinds of block 
whose sizes are 8 x 8 and 16 x 16. They are then transformed by 
the DCT. The smaller are called range blocks and the larger are 
called domain blocks. They are denoted as F&,v) and Fo(u,v), 
respectively. 

We then classify FR(u,v) into two kinds of range block according 
to its AC coefficients: 

If IFR(o31)l +IFR(1,0)1 + IFR(1,1)1 

< T FR(u,  v) is a simple range block = (  2 T FR(u,  v) is a complicated range block 

where Tis  a threshold. 

DC coefficient FA0,O). 10 bits are needed to store the coefficient. 
For a simple range block, we just approximate it by storing its 

For a complicated range block, we approximate it by 

FR(%v)  = T O ( P ( F D ( U , u ) )  

where $ is a contractivity operator which maps a 16 x 16 domain 
block Fo(u,v) onto an 8 x 8 range block FR(u,v). It takes the low- 
frequency part of F&v) shown as in Fig. 1. 

‘c is the compound transformation composed of an isometry, a 
scaling and a luminance shift of the form 

FR(’%v) = T O i P ( F D ( % u ) )  

Ag = F D ( 0 , O )  - F R ( o , o )  U = 0 = 0 = (  k(a(’f’(FD(%u)))  otherwise 

where a is a scaling factor which takes values in the set (0.2, 0.3, 
..., 0.9}, Ag is the luminance shift and 1“ is one of the eight iso- 
metries which include reflection rotation [I]. In the DCT domain 
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Fig. 1 Contractivity operator and its result 

The part in black is its result 

The derivation process of the isometnes’ changes from spatial 
domain to DCT domain is similar to that presented by Bracewell 
et a/. [I. Here the detailed derivation is omitted. 

The coding procedure of the complicated range block is to 
search for the best matching domain block among all the domain 
blocks to minimise the distortion. The distortion used here is 

There are four parameters needed to be stored; the bit allocation 
is as follows: 

1. the co-ordinates of the best matching domain block 5+5 = 10 

2. a 3 

3. In 3 

4. 4 11 

Next,we calculate the error image between the range block and 
its fractal approximation: 

E(’%v) = F R ( U , u )  - T o ( P ( F D ( % u ) )  

For the error image E(u,v), we quantise it and encode it using 
the Huffman code, then store it. When every range block is 
encoded, the compression procedure is fmished. 

(ii) Decompression procedure: The decompression prooedure is rel- 
atively simple. First we decode the fractal parameters and then 
transform an arbitrary image iteratively by fractals. It needs about 
eight iterations to converge. This procedure is similar to that pro- 
posed by Jacquin [I]. In contrast to the Jacquin method, our 
method is carried out in DCT domain. This procedure produces 
the fractal approximation of the original image: on the other 
hand, we decode the Huffman code, dequantise it and transform it 
by 2-D inverse DCT. Thus we obtain the error image. Finally, the 
addition of the fractal appoximation and the error image is the 
decompressed image. 
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Fig. 2 Original image ‘Lena’ 

Experimental results and conclusion: We have compressed the 
standard test image ‘Lena’ using the method. The result is satisfac- 
tory. The compression ratio is 12.4. The quality of the decom- 
pressed image is very good, with SNR = 32.3 dB. The original 
image and the decompressed image are shown in Figs. 2 and 3. 

Fig. 3 Decompressed image 

The method presented in this Letter has the following features: 

(i) The fractal coding procedure is all camed out in the DCT 
domain. It can provide high compression. 

(U) Although fractals can achieve high compression, the details of 
the original image have been lost. 

In this Letter, we use the DCT to encode the image details, so the 
method can provide high quality at a high compression ratio. 
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Real-time approach to 3-D object tracking in 
complex scenes 

P. Matteucci, C.S. Regazzoni and G.L. Foresti 

Indexing terms: Computer vision, Kalman filters, Tracking, Mobile 
robots 

A real-time tracking algorithm for estimating the positions, 
motions and dimensions of unknown objects in image sequences 
is presented. Processing is based on the dynamic model of the 
motion imaging situation and on Kalman fdter theory. 
Experimental results on synthetic and real images demonstrate the 
applicability of the algorithm to surveillance systems. 

Introduction: Tracking objects of unknown dimensions is an 
important task in several image-processing applications, as dem- 
onstrated by many recent papers [ I ,  21. In this Letter, a real-time 
tracking method based on a Kalman filter is presented. The 
approach can be used by a real-time surveillance system in appli- 
cations where unknown objects entering the working area of an 
autonomous vehicle have to be detected and tracked. Several tests 
on both synthetic and real image sequences were performed. 

System descriprion: The surveillance system is composed of three 
levels. At the lower level, a change detection (CD) module and a 
focus of attention (FA) module [3] identify subareas in input 
images Z(x, y ) .  Such subareas exhibit remarkable differences in 
comparison with a background image B(x, y). In particular, the 
position and the dimensions of the minimum bounding rectangle 
(MBR) for these subareas on the image plane are determined. At 
the middle level, a matching (MA) module detects feature corre- 
spondences between two successive frames. In particular, the dis- 
placement Ad = [dx, dy] of the MBR centroid and variations (a%, 
d o  in the MBR size are computed. 

At the higher level, a tracking (TR) module estimates the depth 
Z, on an object’s centroid in a general reference system (GRS), 
together with the width W and the length L of the object itself. 
The quantities of interest (QIs) Z,, W, L, allow us to perform 2-D 
into 3-D transformations from the image plane into the GRS and 
to localise the object in the GRS by means of the equations 

where the vector R denotes the position [X, U, z] of a point in the 
GRS, and the vectors m, represent the rows of the matrix MIR for 
perspective transformations [4]. 

Tracking algorithm: The tracking operation is performed in two 
steps: development of a dynamic model for the QIs, and applica- 
tion of the Kalman filter to measure and predict these quantities. 
The dynamic model consists of a differential equation which 
describes the temporal evolution of the QIs (system model) [5] :  

* = o  t = o  (2) 

(where planar motion is assumed and U is the third component of 
the translation vector t = [v, w, U]’) and of an algebraic equation 
which describes the relationship between the QI and the selected 
features (measure model): 

where the vectors Rb and R, represent the position of the object 
centroid and of some object comers in the GRS (Fig. I), respec- 
tively. 
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